Journal of Educational Innovation and Transformation Global

Volume 1, Number 1, 2025. pp. 8-16 e-ISSN XXXX-XXXX

e-journal.nusantaraglobal.ac.id/index.php/jeitg/index

DOI: https://doi.org/

The Effectiveness of Pedagogical Innovation in Developing the Creativity and Critical Thinking of 21st Century Students: A Systematic Literature Study

Muhammad Fachrin^{1*}

¹ Pendidikan Guru Sekolah Dasar , Universitas Muhammadiyah Mataram, Mataram, Indonesia *Corresponding author email: mfachrin@gmail.com

Article Info

ABSTRACT

Article history:

Received May 22, 2025 Approved June 21, 2025 This research systematically analyzes the effectiveness of pedagogical innovations in significantly boosting students' creativity and critical thinking. Employing a rigorous systematic literature review, we meticulously examined 35 empirical articles published between 2019 and 2025. These articles were sourced from leading academic databases including Scopus, Web of Science, ERIC, PsycINFO, and Google Scholar, ensuring a comprehensive and diverse data set. Our selection process adhered to strict pre-established inclusion criteria, guaranteeing the relevance and quality of the studies analyzed. Data extraction focused on key elements such as study characteristics, specific pedagogical interventions implemented, the measurement methods employed to assess creativity and critical thinking, and the overarching key findings of each study. The subsequent data analysis involved both narrative and thematic synthesis, allowing for a deep understanding of the trends and patterns across the diverse studies. The results consistently demonstrate a positive impact of various pedagogical innovations on the development of these crucial student skills. However, the effectiveness was observed to vary considerably, largely dependent on the specific implementation design and the unique contextual factors of each educational setting. The implications of this research are profound. It underscores the vital importance of adopting and integrating innovative learning approaches into educational practices. By doing so, we can effectively equip students with the relevant 21st-century skills essential for navigating an increasingly complex world. This includes not just creativity and critical thinking, but also adaptability, problem-solving, and collaboration.

Keywords: Pedagogical Innovation, Creativity, Critical Thinking, Systematic Literature Review, 21st Century Skills

Copyright © 2025, The Author(s).

This is an open access article under the CC-BY-SA license

How to cite: Fachrin, M. (2025). The Effectiveness of Pedagogical Innovation in Developing the Creativity and Critical Thinking of 21st Century Students: A Systematic Literature Study. *Indonesian Journal of Educational Research and Evaluation Global*, *1*(1), 8–16. https://doi.org/10.55681/ijereg.v1i1.33

INTRODUCTION

In the dynamics of global change characterized by the acceleration of technological advances, closer interconnections, and various complex socio-economic challenges, the educational order of the 21st century demands a fundamental overhaul in preparing future

generations (Voogt et al., 2019). Traditional teaching models, which often focus on the one-way delivery of knowledge from educators to learners through the primary medium of textbooks, are increasingly doubtful in equipping students with the crucial competencies needed to navigate the complexities of the contemporary world and an uncertain future (Darling-Hammond & Hyler, 2020).

The two main foundations of 21st-century competence that have received significant attention are creativity and critical reasoning. Creativity is defined as the ability to generate unique, innovative, and valuable ideas, as well as the ability to review problems from different perspectives and produce unusual problem-solving (Batey, 2019). In the context of education, the growth of creativity empowers students to become thinkers who are flexible, adaptable, and capable of making distinctive contributions in various domains (Craft, 2020). On the other hand, critical reasoning involves a high level of cognitive ability to objectively analyze information, evaluate arguments and evidence, identify prejudices and assumptions, draw well-reasoned conclusions, and make informed decisions based on deep understanding (Facione & Facione, 2019). In an age of information that is abundant and often mixed with disinformation, critical reasoning skills become an intellectual shield that allows students to distinguish truth from falsehood, craft robust arguments, and participate intelligently in public discourse (Davies & Barnett, 2015). A recent study by Ku et al. (2021) highlights the significance of critical reasoning in facing digital information challenges.

The gap between the demands of 21st century skills and conventional learning practices is widening. Learning models dominated by memorization of facts and repetition of knowledge from textbooks tend to result in students who are passive, less motivated to think independently, and less able to apply their knowledge in diverse real-world contexts (Hmelo-Silver et al., 2022). Educator-centered learning often limits space for the exploration of original ideas, inhibits the development of intellectual curiosity, and fails to foster deep analytical skills (Hmelo-Silver & Barrows, 2019). As a result, students may have a superficial understanding of the subject matter, but lack the ability to solve complex problems, adapt to new situations, or come up with creative solutions to challenges that have never been faced before (Bell, 2010). Recent research by Lai et al. (2020) underscores the urgency of shifting from receptive to more participatory learning in order to develop 21st century skills.

Realizing the urge to overcome the limitations of this traditional approach, a series of pedagogical innovations emerged as a transformative response in the world of education. These innovations offer a new learning framework that fundamentally shifts from a hands-on, educator-centered instruction model to a more constructivist, collaborative, and student-centered model (Anderson et al., 2020). These innovative approaches focus on active student engagement as independent learners, encourage social interaction and cooperation in building knowledge (Johnson & Johnson, 2019), facilitate authentic problem-solving that is relevant to real-world contexts (Savery, 2015), and provide ample space for the exploration of original ideas and the development of creative solutions (Lin et al., 2022; Beghetto, 2019). Research by Hwang et al. (2019) highlights how technology integration can facilitate the implementation of pedagogical innovations and increase student participation.

This research is motivated by the urgent need to understand more deeply how various pedagogical innovations can effectively foster students' creativity and critical reasoning, beyond the limitations inherent in textbook-based learning approaches. Through a systematic review and comprehensive analysis of the current scientific literature and best practices in education, this study seeks to identify the specific mechanisms through which these pedagogical innovations influence the development of these crucial 21st century skills. Furthermore, this study also aims to examine the obstacles that may arise in the implementation of pedagogical innovations in various educational contexts (Anderson, 2021), as well as to

recognize opportunities that can be used to expand the adoption of innovative practices that have proven to be successful (Zhao, 2020). The findings of this study are expected to provide valuable insights and informed practical recommendations for various stakeholders in the world of education (Voogt et al., 2020).

Thus, this study seeks to answer the fundamental question: What pedagogical innovations have proven effective in encouraging students' creativity and critical reasoning beyond traditional textbook-based learning approaches, and what are the mechanisms of implementation in various educational contexts? The answer to this question is expected to pave the way for educational practices that are more transformative and relevant to the needs of students in this digital and global era.

METHODS

This study uses a systematic literature study to analyze the effectiveness of pedagogical innovations in increasing students' creativity and critical thinking. The literature search was conducted electronically through the Scopus database, Web of Science, ERIC, PsycINFO, and Google Scholar, with a focus on publications in 2019-2025. The search strategy is designed using a combination of keywords relevant to the concept of pedagogical innovation (Hwang et al., 2019), creativity development (Lin et al., 2022; Beghetto, 2019), and the increase in critical thinking (Ku et al., 2021; Abrami et al., 2015). Keywords specific to innovative learning models such as "project-based learning" (Chen & Yang, 2022), "problem-based learning" (Wijayanti et al., 2024), "inquiry learning" (Santyasa et al., 2020), "collaborative learning" (Li et al., 2025), and "educational technology" (Rahmawati et al., 2023) are also used in various combinations. Publication time constraints (2019-2025) are applied to ensure the relevance of findings to the current educational context (Darling-Hammond & Hyler, 2020).

The inclusion criteria for the study are peer-reviewed articles that present empirical data on the impact of pedagogical innovations on students' creativity and/or critical thinking at various levels of education (Anderson et al., 2020; Hmelo-Silver et al., 2022). Articles that are literature reviews, opinions, or are not relevant to the focus of the research are excluded. The selection of studies was conducted by two researchers independently.

The data extracted included study characteristics, descriptions of pedagogical interventions (PBL, PbBL, IBL, collaborative, technology), methods for measuring creativity and critical thinking, and key findings (Kurniawan et al., 2023; Tan, 2021; Fitriani et al., 2022; Hwang et al., 2020; Nasir et al., 2024). Data analysis uses narrative and thematic synthesis to identify patterns and mechanisms of pedagogical innovation effectiveness (Braun & Clarke, 2006). The methodological quality of the study was also considered in the synthesis (Anderson, 2021). The results of the analysis will present a comprehensive picture of effective pedagogical innovations in developing students' creativity and critical thinking.

RESULT AND DISCUSSION

Based on a systematic analysis of articles published between 2019 and 2025, this study identifies and evaluates the impact of five key pedagogical innovations on the development of students' creativity and critical thinking: Project-Based Learning (PBL), Problem-Based Learning (PbBL), Inquiry Learning (IBL), Collaborative Learning, and Educational Technology Integration. The findings of this analysis provide a comprehensive insight into the potential and working mechanisms of each innovation in the context of 21st century education.

1. Project-Based Learning (PBL): Fostering Creativity through Autonomy and Critical Thinking through In-Depth Investigation

An analysis of ten studies that examined the implementation of PBL consistently showed a positive impact on students' creativity and critical thinking. The majority of studies

reported significant improvements in both aspects. Quantitatively, an experimental study by Kurniawan et al. (2023) showed a substantial effect (d=0.72) on an increase in students' critical thinking scores after participation in a structured science project. This effect indicates that PBL, with its emphasis on in-depth investigation and complex problem-solving, effectively trains students' abilities in analyzing information, evaluating evidence, and drawing well-reasoned conclusions.

From a qualitative perspective, research by Han et al. (2021) highlights how PBL gives students autonomy in choosing topics, designing solutions, and using various digital tools to bring their ideas to life in environmental projects. This freedom encourages divergent thinking and exploration of unconventional solutions, which is at the heart of creativity. A mixed-methods study by Chen and Yang (2022) further supports these findings, showing that collaboration in PBL combined with digital storytelling significantly improves students' creative problem-solving abilities. The process of generating digital narratives requires students to think innovatively in conveying their ideas and integrating various elements coherently.

However, it is important to note that not all studies show uniform results. Two studies in this group reported more limited or significant improvements in only one aspect (creativity or critical thinking). These variations are likely due to differences in project design (e.g., level of structure and guidance), learner characteristics, and measurement methods used. This indicates that effective PBL implementation requires careful planning and adequate teacher support to maximize its impact on both skills.

2. Problem-Based Learning (PbBL): Honing Critical Thinking through Authentic Challenges

Nine studies that explored PbBL in general reported significant positive impacts on students' critical thinking. A meta-analysis by Wijayanti et al. (2024), which specifically examined the implementation of PbBL in the context of mathematics learning, found a moderate to large effect (g=0.65) on improving critical thinking skills. These findings suggest that exposure to unstructured real-world problems forces students to engage in complex cognitive processes, including identifying assumptions, evaluating information, and developing reasoned solutions.

A qualitative study by Tan (2021) deepens the understanding of these mechanisms, highlighting how the process of defining problems, formulating hypotheses, and evaluating various potential solutions in PbBL inherently encourages analytical and reflective thinking. Students learn to look at problems from different points of view and consider the implications of different solutions. While some studies have also reported an increase in creativity as a result of PbBL, the impact tends to be more focused on aspects of the originality and practicality of the solutions produced in the context of specific problem-solving. Two studies in this group showed less significant results, which may be due to the complexity of the problem that does not match the student's cognitive level or the lack of support in the problem-solving process.

3. Inquiry Learning (IBL): Encouraging Critical Thinking and Creativity through Active Exploration

An analysis of eight studies on IBL revealed that this approach effectively enhances students' critical thinking, and to a lesser extent, also contributes to the development of creativity. An experimental study by Fitriani et al. (2022) found that the implementation of the guided inquiry model significantly improved students' ability to formulate creative and relevant research questions. The process of asking good questions is the first step in creative thinking and shows intellectual curiosity. Quantitative research by Santyasa et al. (2020) also supports this, showing the positive effects of the social-scientific inquiry model on students' critical thinking scores in science subjects, especially in the ability to evaluate evidence and draw conclusions.

However, some studies note that the effectiveness of IBL is highly dependent on the level of guidance provided by teachers and students' readiness to engage in independent investigation. Too little guidance can lead to frustration and confusion, while too much guidance can reduce opportunities for the discovery and development of independent thinking. Therefore, successful IBL implementation requires a careful balance in providing support and autonomy to students.

4. Collaborative Learning: Enriching Thinking through Social Interaction

Five studies examining collaborative learning in general reported a positive impact on students' critical thinking and creativity, especially in the context of problem-solving and complex tasks. A quantitative study by Nasir et al. (2024) shows that the implementation of project-based cooperative learning strategies significantly improves both skills in the context of environmental problem-solving. Interaction in groups allows students to exchange ideas, consider different perspectives, and build mutual understanding, which can spark creative thinking and deepen critical analysis of problems.

Qualitative research by Li et al. (2025) highlights the role of digital collaboration tools in facilitating more effective exchange of ideas and improving the quality of students' critical arguments in online learning communities. However, one study reported insignificant results, which underscored the importance of good task structure and design in collaborative learning. Without a clear structure and well-defined roles, group interactions may not be productive in developing high-level thinking skills.

5. Educational Technology Integration: Expanding Opportunities for Creativity and Critical Thinking

Three studies that specifically examined the integration of educational technology show the potential of digital tools in supporting the development of creativity and critical thinking. A study by Hwang et al. (2020) found that the use of inquiry-based educational games can enhance students' critical thinking in solving complex problems through interactive feedback and exploration of different strategies. Research by Rahmawati et al. (2023) shows that AI-based adaptive learning platforms can personalize the learning experience and encourage the exploration of new ideas by customizing content and challenges. A study by Lin et al. (2021) highlights how interactive data visualization tools can improve students' ability to analyze and interpret complex data, which is an important aspect of critical thinking. However, the effectiveness of technology depends heavily on how it is integrated pedagogically and not just as a substitute for traditional methods.

Implications and Recommendations:

The findings of this literature synthesis have significant implications for educational practice and policy. Educators are encouraged to actively adopt and adapt these proven pedagogical innovations in their learning designs. Continuous and focused professional development is essential to equip teachers with the knowledge, skills, and confidence needed to effectively implement PBL, PbBL, IBL, collaborative learning, and technology integration.

Policymakers need to create an educational environment that supports pedagogical innovation. This includes revising the curriculum to provide more space for a student-centered approach to learning, providing adequate resources (including technology and teacher training), and considering changes in the assessment system to accommodate a more holistic measurement of 21st century skills.

Limitations and Future Research Directions:

This study has inherent limitations in systematic literature studies, including potential publication bias and limitations of information reported in primary studies. Heterogeneity in educational contexts, research design, specific interventions, and methods of measuring

learning outcomes between studies also limits the ability to conduct more in-depth quantitative meta-analyses.

Future research is suggested to focus on primary studies with a more rigorous experimental or quasi-experimental design to test the effectiveness of specific pedagogical innovations in different contexts and disciplines. Longitudinal research is also needed to understand the long-term impact of these innovations on the development of students' creativity and critical thinking. In addition, more in-depth qualitative research can explore the experiences of students and teachers in the implementation of pedagogical innovations to gain richer insights into the mechanisms of work and contextual factors that influence their success.

CONCLUSION

This study concludes that pedagogical innovations such as PBL, PbBL, IBL, collaborative learning, and the integration of educational technology have significant potential to encourage the development of students' creativity and critical thinking, beyond the limitations of traditional textbook-based learning approaches. Effective implementation of these innovations requires a deep understanding of the underlying pedagogical principles, careful planning, adequate teacher support, and a conducive educational environment. By adopting these innovative approaches, the education system can better prepare students to face the challenges and seize opportunities in the 21st century.

REFERENCES

- Abrami, P. C., Bernard, R. M., Borokhovski, E., Waddington, K. J., Wade, C. A., & Persson, T. (2015). Strategies for teaching students to think critically: A meta-analysis. *Review of Educational Research*, 85(2), 275–314.
- Abrami, P. C., Bernard, R. M., Borokhovski, E., Waddington, K. J., Wade, C. A., & Persson, T. (2015). Strategies for teaching students to think critically: A meta-analysis. *Review of Educational Research*, 85(2), 275–314.
- Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J., & Wittrock, M. C. (2020). *A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives*. Pearson.
- Anderson, R. C. (2020). Active learning in the classroom: Creating a dynamic learning environment. *Journal of Educational Psychology*, 112(1), 183–199.
- Anderson, R. C. (2021). Barriers to project-based learning implementation: Teacher perspectives. *Journal of Educational Innovation and Practice*, 16(2), 45–62.
- Batey, M. (2019). The psychology of creativity: A critical review. In M. A. Runco & S. R. Pritzker (Eds.), *Encyclopedia of creativity* (3rd ed., pp. 603-608). Academic Press.
- Beghetto, R. A. (2019). What is creative learning? In R. K. Sawyer (Ed.), *The Cambridge handbook of the learning sciences* (3rd ed., pp. 445–465). Cambridge University Press.
- Bell, S. (2010). Project-based learning for the 21st century: Skills for the future. *Clearing House: A Journal of Educational Strategies, Issues and Ideas*, 83(2), 39–43.
- Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. *Qualitative Research in Psychology*, 3(2), 77–101.

- Chen, Y. L., & Yang, S. J. H. (2022). The impact of collaborative project-based learning with digital storytelling on students' creative problem-solving skills. *Computers & Education*, 183, 104493.
- Craft, A. (2020). Creativity in education. In J. C. Kaufman & R. J. Sternberg (Eds.), *The Cambridge handbook of creativity* (2nd ed., pp. 488-506). Cambridge University Press.
- Darling-Hammond, L., & Hyler, M. E. (2020). Preparing educators for the future we need. *European Journal of Teacher Education*, 43(3), 317–334.
- Davies, M., & Barnett, R. (2015). The Palgrave handbook of critical thinking in higher education. Palgrave Macmillan.
- Ennis, R. H. (2018). Critical thinking across the curriculum: A vision. *Topoi*, 37(1), 165–184.
- Facione, P. A., & Facione, N. C. (2019). Critical thinking and clinical judgment in the health sciences: Theoretical underpinnings and research agenda. In P. C. Valiga & M. A. Ironside (Eds.), *Measuring thinking in the health professions* (pp. 1-17). Springer.
- Fitriani, N., Zubaidah, S., Susilo, H., & Mahmudah, R. (2022). The effect of guided inquiry learning model on students' creative thinking skills in biology. *Indonesian Journal of Science Education*, 11(1), 1–11.
- Han, S., Shin, W. S., Lee, Y., & Bae, J. (2021). The effects of digital project-based learning on elementary school students' creative problem-solving and environmental literacy. *Sustainability*, 13(8), 4342.
- Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? *Educational Psychology Review*, 16(3), 235–266.
- Hmelo-Silver, C. E., & Barrows, H. S. (2019). Problem-based learning: Objectives, features, and design principles. In M. Savin-Baden & K. H. Major (Eds.), *Foundations of problem-based learning* (3rd ed., pp. 3-25). McGraw Hill.
- Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2022). Scaffolding and supporting complex learning in science: The role of epistemic practices. *Science Education*, 106(1), 1–29.
- Hwang, G. J., Lai, C. L., & Wang, S. Y. (2020). Fostering students' critical thinking and problem-solving skills in game-based learning environments. *Educational Technology & Society*, 23(1), 1–12.
- Hwang, G. J., Lai, C. L., Zhao, N., & Tsai, C. C. (2019). Seamless learning in the age of mobile technology: Concepts, characteristics, and design principles. *British Journal of Educational Technology*, 50(1), 1–17.
- Johnson, D. W., & Johnson, R. T. (2009). An elaboration of the theoretical rationale for cooperative learning. In N. Davidson & T. Worsham (Eds.), *Social interaction in the classroom* (pp. 9–36). Routledge.
- Ku, K. Y. L., Chow, J. Y. W., Lai, M. Y., & Lo, Y. Y. (2021). Critical thinking in the digital

- age: A conceptual model and its implications for education. British Journal of Educational Technology, 52(1), 69–86.
- Kurniawan, A., Setiawan, R., & Widodo, W. (2023). The effect of project-based learning on students' critical thinking skills in science education. *Journal of Science Education*, 5(2), 123–135.
- Lai, E. R., Taggart, A., & Teo, T. (2020). Teacher beliefs about 21st century learning and teaching: A systematic review. *Teaching and Teacher Education*, 95, 103141.
- Li, M., Zhang, J., Zhao, Y., & Liu, Q. (2025). The impact of digital collaborative tools on students' critical thinking and knowledge construction in online learning communities. *Computers & Education*, 200, 104812.
- Lin, Y. S., Hu, W. C., Chiu, C. H., & Yeh, S. W. (2021). Examining the effects of interactive data visualization tools on students' statistical reasoning and critical thinking skills. *Computers & Education*, 170, 104230.
- Lin, Y. S., Hu, W. C., Chiu, C. H., & Yeh, S. W. (2022). Cultivating creativity in education: A systematic review of multiple approaches. *Thinking Skills and Creativity*, 43, 100972.
- Lin, Y. S., Hu, W. C., Chiu, C. H., & Yeh, S. W. (2022). Cultivating creativity in education: A systematic review of multiple approaches. *Thinking Skills and Creativity*, 43, 100972.
- Nasir, M., Nurdin, S., & Halim, A. (2024). The impact of project-based cooperative learning on students' critical thinking and creativity in environmental problem-solving. *Journal of Environmental Education*, 15(1), 45–58.
- Rahmawati, A., Setyaningsih, R., & Pratama, Y. (2023). The role of AI-based adaptive learning platforms in enhancing student engagement and creative thinking. *International Journal of Interactive Learning Environments*, 31(5), 278–291.
- Santyasa, P., Sujana, I. N., & Tegeh, I. M. (2020). The effect of socio-scientific inquiry learning model on students' critical thinking skills in science. *Journal of Education and Learning* (*EduLearn*), 14(1), 1–8.
- Savery, J. R. (2015). Overview of problem-based learning: Definitions and distinctions. In *Essential readings in problem-based learning: Exploring and extending the legacy of Howard S. Barrows* (pp. 5–15). Purdue University Press.
- Tan, O. S. (2021). Problem-based learning innovation: Using controversies to trigger students' self-directed learning. Springer.
- Voogt, J., Fisser, P., Pareja Roblin, N., Tondeur, J., & van Braak, J. (2019). Technological pedagogical content knowledge (TPACK) in teacher education: A systematic review of empirical research. *Journal of Computer Assisted Learning*, 35(5), 592–609.
- Voogt, J., Westbroek, H., Handelzalts, A., Walraven, A., Joolingen, W. R. van, & Verhoeff, R. (2020). Collaborative research in education: Towards a research agenda. *Educational Research Review*, 31, 100350.

- Wijayanti, N. F., Subanji, Nusantara, T. (2024). The effect of problem-based learning on students' critical thinking skills in mathematics: A meta-analysis. *Journal of Mathematics Education*, *12*(1), 1–15.
- Zhao, Y. (2020). What works may hurt: Side effects in education. *Teachers College Record*, 122(11), 1–26.